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The activation of dioxygen (O2) by Cu(I) complexes is known
to play an important role in biological and industrial oxidation
processes.1-3 The structure-reactivity relationships of the binuclear
copper enzymes, such as tyrosinase, have been extensively inves-
tigated, and model complexes have aided these studies.4-6 In line
with the native systems, most model complexes use facial-capping
trinitrogen ligation of the copper, and all such structurally character-
ized Cu-O2 species exhibit a weak association with the axial
nitrogen ligand. An emerging trend exists in which bidentate
nitrogenous ligands are used, and such ligation does not generally
compromise the stability of the formed Cu-O2 complexes. A
reactivity advantage with externally added substrates may also be
realized as the Cu/O2 cores are potentially more accessible.7,8

Bidentate ligation of peralkylated diamine ligands (PDL) to Cu(I)
is sufficient to allow O2 activation to yield either a pure bis
µ-oxodicopper(III) species (O),3,9,10 or an equilibrium mixture of
the isoelectronicµ-η2:η2-peroxodicopper(II) (P) andO species.11

Here we report a stabilizedP complex that employs a bidentate
secondary diamine ligand (DBED, Scheme 1). Beyond potential
biological relevance, our interest in the Cu(I)-DBED/O2 reactivity
stems from its use in the catalytic oxidative polymerization of
phenols to the thermoplastic polyphenylene oxide (PPO).12,13

Conventional wisdom suggests that secondary amine ligands are
unsuitable for stabilizing the Cu-O2 species, due to the amine
protons.14,15 Yet, thisP complex exhibits thermal stability compa-
rable to the other Cu-O2 species formed using PDL.9,11,16Interest-
ingly, this new complex exhibits tyrosinase-like reactivity by
hydroxylating phenolates to catechols (vide infra), in yields
comparable to those of other reported systems.17,18The reaction of
N,N′-di-tert-butyl-ethylenediamine (DBED) with [Cu(MeCN)4](X)
(X ) CF3SO3

-, ClO4
-, SbF6

-, BF4
-) yields a trigonal-planar Cu-

(I) complex, [(DBED)Cu(MeCN)](X)(1‚X).19 Solutions of1‚X in
aprotic solvents (THF, CH2Cl2, acetone, toluene) react rapidly with
O2 at 193 K to generate thermally sensitive dark green to orange
complexes, depending on the counteranion. Spectroscopic and
analytical data support aµ-η2:η2-peroxodicopper(II) complex,
formulated as [{CuII(DBED)}2(O2)](X)2 (2‚X2) (vide infra).20 These
complexes are EPR silent, NMR active, and have a 2:1 (Cu:O2)
stoichiometry established by spectrophotometric titrations with O2.16

The complex2‚(CF3SO3)2 in THF exhibits characteristic LMCT
absorptions,5,6,21 except that the extinction coefficient of the low-
energy feature at 350 nm is exceptionally large (Figure 1).22

Resonance Raman (rR) spectroscopy of2‚(CF3SO3)2 in THF
confirms aP structure,23 with a low υï-ï ) 721 cm-1 (∆(18O2) )

40 cm-1, Figure 1, inset), and two isotope-insensitive stretches in
the 300 cm-1 region (Table 1).16,24

Solution Cu K edge X-ray absorption spectroscopy (XAS)
exhibits a preedge feature at 8979.5 eV, consistent with a Cu(II)
complex.16 The EXAFS fit clearly requires a Cu‚‚‚Cu contribution
at a distance of 3.45 Å, a distance similar to other structurally
characterizedP complexes.5,6,25 The coordination around each Cu
is best fit as five- rather than four-coordinate with four N/O26 ligands
at 1.96 Å and an additional O/N ligand at 2.53 Å.27 The latter
distance is consistent with an axially bound oxygen atom from a
CF3SO3

- counteranion.10 The variation of the UV-vis and rR
spectra with counteranion and not with solvent suggests an intimate
interaction of the counteranions with the complex.2‚(SbF6)2

exhibits the characteristic UV-vis absorptions and rR shifts of a
P complex distinct from2‚(CF3SO3)2 (Table 1).

The2‚(CF3SO3)2 complex is remarkably stable at 193 K (t1/2 ≈
20 days) given the secondary diamine ligation, yet decays in a first-
order process at elevated temperatures (∆Hq ) 14.8( 0.3 kJ mol-1,
∆Sq ) 10 ( 1 J mol-1 K-1, T ) 193-273 K, THF).28 Deuteration
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Figure 1. UV-vis spectrum of2‚(CF3SO3)2 (THF, 193 K, [Cu]≈ 1 mM).
Inset: Resonance Raman spectra of2‚(CF3SO3)2 (λex ) 351.1 nm, THF,
77 K, [Cu] ≈ 4 mM) using16O2 (solid line) or18O2 (dashed lined).

Scheme 1
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of the N-H groups does not alter the thermal decay rate of2‚
(CF3SO3)2 in THF at 233 K, indicating that the rate-determining
step of thermal decay does not involve N-H bond cleavage.29

The stability of2‚(CF3SO3)2 allows the reactivity with exogenous
substrates to be examined. The isoelectronic speciesP andO are
thought to exhibit different reactivity, with the former a better
oxygen-atom transfer reagent,30 and the latter a better hydrogen-
atom acceptor.11 Consistent with these previous observations,2‚
(CF3SO3)2 reacts stoichiometrically with PPh3 at 193 K in THF to
yield PPh3O (>95%) under pseudo-first-order conditions of PPh3,
yet does not couple 2,4-di-tert-butylphenol to 3,3′,5,5′-tetra-tert-
butyl-2,2′-biphenol.31 This lack of phenolic coupling supports an
attenuated hydrogen-atom abstracting ability of2‚(CF3SO3)2.11 The
reaction of2‚(CF3SO3)2 with catechol, benzyl alcohol, and ben-
zylamine gives good yields of quinone (95%), benzaldehyde (80%),
and benzonitrile (70%), respectively.16 The reactivity of aP species
with the latter two substrates is unprecedented.10,32,33

In contrast to the lack of phenol reactivity,2‚(CF3SO3)2 reacts
rapidly with sodium or lithium salts of 2,4-di-tert-butylphenol at
193 K, as assessed by optical spectroscopy.16,34An analysis of the
products reveals a∼1:1 mixture of 3,5-di-tert-butylcatechol and
3,5-di-tert-butyl-1,2-benzoquinone as products accounting for∼80%
of the oxidizing equivalents of2‚(CF3SO3)2.35 The use of18O2 in
the formation of2‚(CF3SO3)2 followed by a reaction with phenolate
clearly shows that a single oxygen atom is transferred to the catechol
and quinone products, supporting direct oxygen-atom transfer.16

This places2‚(CF3SO3)2 in a limited class of syntheticP species
that efficiently hydroxylates phenolates, similar to tyrosinase.17,18

The contrast in O2 reactivity between the copper complexes of
DBED and its bulkier dimethylated analogue DBDMED (N,N′-di-
tert-butyl-N,N′-di-methyl-ethylenediamine) is striking, but not
unprecedented (Scheme 1).36,37 Steric escalation within a series of
PDL clearly shows that bulkier ligands bias the formation of the
Cu-O2 species towardP rather thanO.10,27 Yet, the less bulky
DBED yields only detectable amounts ofP while DBDMED yields
an equilibrium mixture ofP and O.11,38 A subtle interplay of
electronics and structure are obviously operative in stabilizing each
isomer, ultimately controlling the reactivity with externally added
substrates.
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Table 1. Spectroscopic Features of 2‚(X)2 in THF

complex
UV−vis features λ, nm

(ε, mM-1 cm-1)
rR features ν, cm-1

(∆18O2, cm-1)

2‚(CF3SO3)2 350 (36) 244 (0)
485 (1.2) 313 (0)
605 (0.9) 721 (40)

2‚(SbF6)2 353 (38) 241 (0)
425 (1.7) 308 (0)
472 (2.1) 728 (40)
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